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Abstract

A closed-form inverse solution of the 1-D heat conduction problem for a single fin or spine of constant cross section with an insulated
tip is generalized to account for the effect of the tip heat loss. The heat transfer coefficient (HTC) is assumed to exhibit the power-law type
dependence on the local excess temperature with arbitrary value of the exponent n in the range of �0.5 6 n 6 5. The form of the obtained
inverse solution is the same as the one for a fin with an insulated tip. However, in addition to the dimensionless fin tip temperature Te and
n, the fin parameter N also depends on the complex parameter x2Bi. Using the inversion of this solution and a linearization procedure,
the recurrent direct solution with a high convergence rate is derived. Based on the latter, the explicit direct closed-form solution for the
accurate determination of the temperature distribution along a fin height at the given values of N, n, and x2Bi is obtained. This allows
one to determine the base thermal conductance G of the straight plate fin (SPF) and cylindrical pin fin (CPF). The relations between the
fin parameters are systematized and collected in two tables for the SPF and CPF. They permit one to determine the arbitrary dimension-
less geometrical or thermal fin parameter at given value of any other of its parameters and prescribed or calculated values of the main fin
parameter(s) N or (and) G.
� 2007 Elsevier Ltd. All rights reserved.
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1. Introduction

This paper develops an analytical approach proposed in
[1,2] to solve the 1-D nonlinear heat conduction problem
for a single straight fin of constant cross section governed
by the power-law type dependence of the local heat transfer
coefficient on the temperature difference between the fin
surface and environment. Such problems are often consid-
ered in thermal design of fins and finned surfaces with a
non-uniform heat transfer coefficient (see, for example,
review [3] and books [4,5]).

It is well known that in the most practical applications
the local heat transfer coefficient h along the fin height is
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not uniform. It depends on the local coordinate or the tem-
perature difference between the fin surface and environ-
ment. The latter dependence is usually expressed as a
power function of #, h = a#n with constant a and n. The
1-D steady-state problem of heat conduction, governed
by the power-law type temperature dependent local heat
transfer coefficient for a single straight fin of uniform cross
section is reduced to the solution of ordinary nonlinear sec-
ond-order differential equation with two boundary condi-
tions. The analytical and numerical solutions of such
problems for the definite values of n made their appearance
in the middle 1960s– early 1970s (see, for example, papers
[6–9]). Ünal [10–12] showed that the explicit analytical
closed-form solutions can be obtained only for several def-
inite values of n = �4, �1, and for n = 0. Latter corre-
sponds to the uniform heat transfer coefficient over the
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Nomenclature

a, ae given constants in the heat transfer equation for
the lateral surfaces and tip surface of a fin
(W m�2 K�(n+1))

ap profile area of the SPF (m2)
A fin cross-sectional area (m2)
Ap; bAp dimensionless total and reduced profile area of

the SPF, Ap = ap(hb/k)2; bAp ¼ Ap=2
Bi, Bil, Bia, Biv dimensionless Biot numbers based on

the thickness (radius), height, profile area (vol-
ume) of the SPF(CPF), respectively

Ef extension factor of the total fin heat transfer sur-
face, F/A

F area of the total fin heat transfer surface (m2)
gb fin base thermal conductance, Qb/#b (W K�1)
gl thermal conductance of a fin with insulated lat-

eral surfaces, kA/l (W K�1)
gp thermal conductance of the fin prime surface

with an area equal to A (W K�1)
G dimensionless thermal conductance of the SPF

and CPF, G ¼ bGz=ðBi2
a=2Þ1=3; G ¼bGc=½Bi3

v=ð4pÞ�3=5

Gb dimensionless fin thermal conductance, gb/gl

Gc; bGc dimensionless total and reduced thermal con-
ductance of the CPF, Gc = gb(hb/k2), bGc ¼
Gc=ð4pÞ

GcV dimensionless thermal conductance of the CPF
per unit volume, Gc/V

Gd dimensionless relative thermal conductance of a
fin, Gb/Gb,n=0

Gz; bGz dimensionless total and reduced thermal con-
ductance of the SPF, Gz = gb/(zk); bGz ¼ Gz=2

GzAp
dimensionless specific thermal conductance of
the SPF, Gz/Ap

h, he heat transfer coefficients on the fin lateral and
tip surfaces (W m�2 K�1)

K fin augmentation factor (effectiveness),
gb/gp

k thermal conductivity of the fin material (Wm�1

K�1)
l fin height (m)
n given exponent in the heat transfer Eq. (1)
N dimensionless thermo-geometrical fin parame-

ter, l
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
hbP=ðkAÞ

p
P perimeter of the fin cross section (m)
r radius of the CPF (m)
Qb heat flow dissipated by the fin (W)
t fin temperature (K)
ta environment (ambient) temperature (K)
T dimensionless fin temperature, #/#b

Te dimensionless fin tip temperature, #e/#b

v volume of the CPF (m3)
V ; bV dimensionless total and reduced volume of the

CPF, V = v(hb/k)3, bV ¼ V =ð4pÞ
x space coordinate (m)
X dimensionless space coordinate, x/l
z width of the SPF (m)

Greek symbols

d fin thickness (m)
l preexponential factor in Eqs. (8), (11) and below
# local temperature difference between a fin and

environment, t � ta (K)
u relative percent discrepancy between the closed-

form and recurrent solutions for Te and T (%)
w fin aspect ratio (fin height to half thickness or

half radius ratio), Bil/Bi

x = he/hx=0 ratio of heat transfer coefficients on the fin
tip and lateral surfaces, ae/a

Subscripts and superscripts

a ambient medium (environment)
b fin base (at X = 1)
e fin tip (at X = 0)
* fin with an insulated tip
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whole surface of the fin. For a limited number of n the ana-
lytical solutions can be expressed via special functions.
However, all these formulae are implicit with respect to
the dimensionless temperature Te of the fin tip and their
analytic inversion into an explicit form is possible only
for values of n indicated above. The effect of the boundary
condition at a fin tip on the performance of the fin was
investigated in [13]. Sen and Trinh [14], Yeh and Liaw
[15] as well as Liaw and Yeh [16,17] showed that the exact
inverse solution exists in the form of the three-parameter
hypergeometric function for the arbitrary values of n. This
representation is also an implicit expression with respect to
Te.

An analysis of the longitudinal and annular fins and
spines is performed by Laor and Kalman in [18]. The effect
of the temperature dependence of the heat transfer coeffi-
cient on the fin performance and optimum dimensions
was analyzed for the fins subjected to various heat transfer
modes, specifically, free convection (n = 1/4 and n = 1/3),
nucleate boiling (n = 2) and radiation (n = 3). The govern-
ing equations were solved numerically by the trial-and-
error method. The efficiency and optimum fin performance
as well as dimensions were described graphically and by
simple correlations for the above-mentioned cases.

Performance of single fins of different types, specifically
straight plate, annular and pin fins, with different forms of
profile area, in particular, uniform (of constant thickness
or diameter), convex and concave parabolic, and triangular
has been investigated in the papers by Mokheimer [19,20]
for the natural convection heat transfer mode. Results have
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been presented in the plots of fin efficiency vs thermo-geo-
metrical parameter of a fin. But the latter parameter
involves the heat transfer coefficient calculated locally
and averaged along the fin. Since such coefficient is not
given by the problem input data it needs to be related with
the specified data. Otherwise the presented plots for the fin
efficiency is impossible to use in practice.

An interesting method for analysis of individual longitu-
dinal fins with rectangular profile, uniform heat transfer
coefficient, and a non-insulated tip has been proposed by
Razelos and Krikkis [21]. It has been shown that, with a
slight modification of the dimensionless parameters that
describe this problem, the analysis of the fin with a non-
insulated tip becomes similar to those for the fin with an
insulated tip. It was done by introduction of complex var-
iable x

ffiffiffiffiffi
Bi
p

to account for the non-insulated tip, where
x = he/h is ratio of the heat transfer coefficients on the
tip surface and on the lateral surfaces of a fin. We will
use this idea for analysis of single fins with a non-insulated
tip and with a heat transfer coefficient depending on the
local temperature excess.

The detailed examination of the papers related to the
analysis and optimization of a single fin subject to the
power dependence of h on # allows us to make a conclusion
that the obtained solutions are usually presented in a
graphical form for certain heat transfer modes, i.e. for
the definite values of n. To our knowledge, the closed-form
formulae to determine directly the fin tip temperature
excess Te and the heat flow dissipated by the fin under
the continuous variation of the given independent variables
n, N and x2Bi were absent in the available literature. The
expressions of such kind were first obtained in [1,2]. The
closed-form inverse solution of the 1-D heat conduction
problem for a single fin with a constant cross section and
an insulated tip (x2Bi = 0) was derived in [1]. It was
obtained in a form N=N 0 ¼ T�ln

e where N0 is a well-known
expression for N at n = 0 that corresponds to the uniform
heat transfer coefficient over the whole surface of the fin. In
[1], a coefficient l was found to be equal to 0.4 after the fit-
ting procedure with the results of the numerical integration
in the range 0.1 6 Te 6 1 and �7 6 n 6 7. The recurrent
direct solution with the high convergence rate to calculate
accurately Te for given values of n and N is obtained in
[2] by the inversion of the closed-form inverse solution.
The high convergence rate was achieved by using the line-
arization procedure. The value of Te allowed one to com-
pute the fin base thermal conductance and augmentation
factor.

Hence, taking into consideration the aforementioned
remarks, the present paper has the following objectives:

� The results of [1,2] have to be generalized to include fins
with a non-insulated tip, i.e. the effect of the fin tip heat
loss must be taken into account.
� The closed-form inverse solution has to be derived for

straight fins of uniform cross section with a non-insu-
lated tip.
� The obtained extended inverse solution has to be
inverted into the direct recurrent solution to determine
Te and temperature distribution along the fin height.
� The linearization method developed in our paper [2] has

to be used to transform the direct recurrent formulae for
Te and for the temperature distribution along the fin
height with poor rate of convergence into the corre-
sponding expressions with a very high convergence rate.
� The formulae, which allow one to determine the arbi-

trary geometrical or thermal parameter of the SPF and
CPF using the given value of any other of its geometrical
or thermal parameters and specified values of n, N or
(and) G, have to be systematized and tabulated.
� All these contributions must allow to obtain explicit

closed-form expressions for optimum geometrical and
thermal characteristics of the SPF and CPF in the sec-
ond part of this study.

The considered problem will be solved using the follow-
ing set of the extended Murray–Gardner assumptions [5]:

(1) The thermal process in the fin and overall heat trans-
fer problem are steady state.

(2) The fin material is homogeneous and isotropic.
(3) The local heat transfer coefficient on the lateral faces

and tip of the fin is a power function of the local tem-
perature difference between the fin surface and envi-
ronment with the same values of exponents n and,
in general case, different values of coefficients a for
the lateral faces and ae for the tip, i.e. with different
values of fin tip ratio x = he/hx=0 = ae/a.

(4) The temperature of the environment is uniform and
constant.

(5) The fin thickness is small compared with its height
and length, so that temperature gradients across the
fin thickness and heat transfer from the edges of the
fin may be neglected (1-D heat conduction
assumption).

(6) The temperature of the fin base is uniform and
constant.

(7) There is a perfect thermal contact between the fin and
the prime surface at the base.

(8) There are no heat sources within the fin itself.
2. Extension of the [1] solution to account for a fin tip heat

loss

Earlier [1], we have solved a heat conduction problem
for a straight fin of rectangular profile (a longitudinal fin
or a spine) with a constant cross-sectional area A of an
arbitrary form having the perimeter P. The local heat
transfer coefficient along the fin height was considered to
exhibit the power-law type dependence on the local temper-
ature difference between the fin surface and the environ-
ment, i.e.



Fig. 1. Preexponential factor l in Eq. (8) plotted as a function of the
product x2Bi for a straight fin with a non-insulated and, particularly, an
insulated tip predicted by Eqs. (6), (8), and (10) (dot-centered open circles)
and an approximation curve for these data by the second-order polyno-
mial with respect to x

ffiffiffiffiffi
Bi
p

(solid line).
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h ¼ aðt � taÞn ¼ a#n: ð1Þ
It is assumed that the heat transfer coefficient for the tip
surface of a fin as function of the tip temperature excess
te � ta has the same form as Eq. (1) with the same value
of exponent n but, in general case, with different coefficient
ae 6¼ a. Thus, the dimensionless ratio of x = he/hx=0 = ae/a
was introduced into analysis to account for the heat loss
from the fin tip. In general case, value of x P 0. For fins
with an insulated tip x = 0.

The one-dimensional equation of the steady-state heat
conduction for a fin is analyzed. This equation in terms
of dimensionless variables X = x/l and T = (t � ta)/
(tb � ta) = #/#b can be written as follows:

d2T

dX 2
� N 2T nþ1 ¼ 0; ð2Þ

where the thermo-geometrical parameter N of a fin in Eq.
(2) is defined as

N ¼ l

ffiffiffiffiffiffiffiffi
hbP
kA

r
¼ l

ffiffiffiffiffiffiffiffiffiffiffi
a#n

bP
kA

r
: ð3Þ

The parameters hb, l, A, and P in Eq. (3) represent the heat
transfer coefficient on the lateral surfaces at the fin base, fin
height, area and perimeter of the fin cross section, respec-
tively, k is the thermal conductivity of the fin material.
Note that the height coordinate X has its origin at the fin
tip and has a positive orientation from the fin tip to the
fin base.

The first boundary condition to Eq. (2) to account for
the fin tip heat transfer can be written in dimensionless
form as

dT=dX jX¼0 ¼ �xBilT nþ1
e ¼ �x

ffiffiffiffiffi
Bi
p

NT nþ1
e ; X ¼ 0; ð4Þ

where x = he/h = ae/a is a ratio of heat transfer coefficients
from the fin tip surface and its lateral surfaces at the tip
coordinate (X = 0), Bil = hbl/k is the Biot number based
on the fin height l and on the fin base heat transfer coeffi-
cient hb, Bi = hbA/(kP) is the transverse Biot number of a
fin.

The second boundary condition at the fin base is the
same as that for the fin with an insulated tip:

T ¼ 1; X ¼ 1: ð5Þ
Taking into account the above boundary conditions, we get
the following solution of Eq. (2) for the thermo-geometri-
cal parameter N of the fin with a non-insulated tip in form
of definite integral likewise to definite integral in [1] for a
fin with an insulated tip,

for n 6¼ �2

N ¼
Z 1

T e

dT=
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
½2=ðnþ 2Þ�fT nþ2 � T nþ2

e ½1� ðnþ 2Þx2BiT n
e=2�g

q
;

ð6Þ

Using the derivative of the general solution of Eq. (2) at the
fin base, we get the following expression for the thermal
conductance of a fin with a non-insulated tip,
for n 6¼ �2

Gb ¼
gbl
kA

¼ N
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
½2=ðnþ 2Þ�f1� T nþ2

e ½1� ðnþ 2Þx2BiT n
e=2�g

q
: ð7Þ

The latter equation involves the same expression in square
brackets as the corresponding brackets in the denominator
of Eq. (6). If the tip of a fin is insulated (x2Bi = 0), then the
value in square brackets of Eqs. (6) and (7) is equal to 1
and these equations are simplified to corresponding expres-
sions in [1]. In this case functions N vs Te and Gb vs Te de-
pend on single parameter n only, whereas two other
parameters x and Bi are added for the fin with a non-insu-
lated tip. Generally, parameter x is always positive and can
be lesser, equal to, or greater than 1. Parameter Bi is the
dimensionless expression for transverse dimension (half-
thickness or half-radius) of a fin. In the following analysis
we take into account all three parameters n, x and Bi for
the fins with a non-insulated tip. Notice that parameters
x and Bi will occur in all following expressions in the form
of product x2Bi or x

ffiffiffiffiffi
Bi
p

only and can be treated as a sin-
gle parameter.

Numerical computations of the function N vs Te are per-
formed in the present study using Eq. (7) in the range of
independent variable 0 < Te 6 1 for a single given value
of parameter x = 1 (ae = a) and variation of parameters
n and Bi in the range �0.5 6 n 6 5 and 0 6 Bi 6 0.015,
respectively. The results are processed by the least square
method and presented in the same form as in [1], i.e.

N=N 0 ¼ T�ln
e ; ð8Þ

where N0 denotes the N value for n = 0. Function N0 vs Te

with account for the fin tip heat loss (x2Bi) can be written
as
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N 0 ¼ arcosh
1

T e

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1� x2Bi
p

� �
� arcosh

1ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1� x2Bi
p
� �

: ð9Þ

This equation may be rewritten also in the following equiv-
alent form,

N 0 ¼ lnf½1þ
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1� T 2

eð1� x2BiÞ
q

�=½T eð1þ x
ffiffiffiffiffi
Bi
p
Þ�g: ð10Þ

The preexponential factor l in Eq. (8) is not a constant va-
lue being equal to 0.4, as was determined in [1] for the fin
with an insulated tip (x = 0), but it depends only on the
complex parameter x2Bi defined above. The plot l vs

x2Bi calculated using Eqs. (8) and (10) is displayed in
Fig. 1 by dot-centered open circles for x2Bi = 0, 0.001,
0.005, 0.01, and 0.015. The approximation of these data
by the second-order polynomial with respect to x

ffiffiffiffiffi
Bi
p

is
presented in Fig. 1 by a solid line:

l ¼ 0:4ð1þ 0:8x
ffiffiffiffiffi
Bi
p
� 0:414x2BiÞ: ð11Þ

It is seen that approximation curve practically coincides
with data of numerical computation (dot-centered open
circles). Thus, approximate formula is of a high accuracy
for the values of x2Bi in the range 0 6 x2Bi 6 0.015.
Out of this range Eqs. (11) and (8) are less accurate.

3. Recurrent direct solution

The inversion of the closed-form inverse solution Eq. (8)
in combination with Eq. (9) allows to find the recurrent
direct solution for the straight fin of a constant cross sec-
tion. The following denotation is introduced for conve-
nience of the implementation of this procedure,

Z ¼ NT ln
e þ arcosh

1ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1� x2Bi
p
� �

¼ NT ln
e þ ln

1þ x
ffiffiffiffiffi
Bi
pffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

1� x2Bi
p : ð12Þ
a

Fig. 2. Dimensionless temperature of the fin tip T �e and Te plotted as a function
(x2Bi = 0, a) and non-insulated tip (x2Bi = 0.015, b) predicted by numerical e
equation (23) for different values of exponent n (dot-centered open circles).
The next relation can be obtained using Eqs. (8), (9), and
denotation expressed by Eq. (12),

arcosh
1

T e

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1� x2Bi
p

� �
¼ Z; ð13Þ

from which the implicit recurrent formula to determine Te

follows:

T e ¼ 1=
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1� x2Bi
p

cosh Z
� �

: ð14Þ

Using Eq. (12) and formulae of the hyperbolic trigonome-
try, Eq. (14) may be expressed also in the equivalent form,

T e ¼ 1=½coshðNT ln
e Þ þ x

ffiffiffiffiffi
Bi
p

sinhðNT ln
e Þ�: ð15Þ

If heat transfer coefficient over the whole fin surface is uni-
form (n = 0), so the recurrent equation (15) is transformed
into the well-known explicit expression,

T e ¼ 1=ðcosh N þ x
ffiffiffiffiffi
Bi
p

sinh NÞ: ð16Þ

Unfortunately, the recurrent direct solution equation (14)
or (15) has poor convergence. Therefore, it will be trans-
formed into the expression with the very high convergence
rate by the same linearization method, that we used in [2]
for the fins with an insulated tip. Denote the RHS of Eq.
(14) as F(Z) and increment of Te by the symbol D. Then,
the following expression is obtained using the indirect dif-
ferentiation rule,

T e þ D ¼ 1ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1� x2Bi
p

cosh Z
þ dF

dZ
dZ
dT e

D: ð17Þ

From Eqs. (14) and (12) follows, respectively, that

dF
dZ
¼ � sinh Zffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

1� x2Bi
p

cosh2Z
¼ � tanh Zffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

1� x2Bi
p

cosh Z
; ð18Þ

dZ
dT e

¼ lnNT ln
e

T e

¼ AZ

T e

; ð19Þ
b

of thermo-geometrical parameter N for a straight fin with an insulated tip
valuation of the integral in Eq. (6) (solid lines) and by means of recurrent



3314 I.N. Dul’kin, G.I. Garas’ko / International Journal of Heat and Mass Transfer 51 (2008) 3309–3324
where it is denoted that

AZ ¼ lnNT ln
e tanh Z: ð20Þ

To get the expression determining an increment D one has
to substitute Eqs. (18) and (19) into Eq. (17),

T e þ D ¼ 1ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1� x2Bi
p

cosh Z
� AZ

T e

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1� x2Bi
p

cosh Z
D: ð21Þ

As it follows from Eq. (21),

D ¼ 1� T e

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1� x2Bi
p

cosh Zffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1� x2Bi
p

cosh Z þ ðAZ=T eÞ
: ð22Þ

Upon substitution of this expression into the RHS of Eq.
(21) and taking into account that in an incremental form
Te,(j+1) = Te,j + D with subscripts (j) and (j + 1) denoting
the iteration number, we get the following recurrent
formula to determine Te for given values of n, N and
x2Bi,

T e ¼
1þ AZffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

1� x2Bi
p

cosh Z þ ðAZ=T eÞ
: ð23Þ

The subscripts (j) and (j + 1) in Eq. (23) are omitted for
simplicity. An arbitrary value of Te in the range
0 < Te 6 1 can be taken as the zero approximation in the
RHS of Eq. (23). The convergence rate of Eq. (23) is so
high. It is enough only 1–3 iterations to obtain a relative
difference between two successive approximations better
than 10�4 % in the range of 0 < N 6 5; �0.5 6 n 6 5 for
0 6 x2Bi 6 0.015. The comparison of the results obtained
by means of direct recurrent equation (23) and the inverse
closed-form equation (8) shows that they are in excellent
agreement with each other and with the numerical evalua-
tion of integral in Eq. (6) in the whole range of the param-
eters N, n and x2Bi. This is clearly seen in Fig. 2a and b for
Fig. 3. Comparison between the curves T �e vs N (solid lines) and Te vs N

(short-dashed lines) for straight plate fins with an insulated tip (x2Bi = 0)
and non-insulated tip (x2Bi = 0.015) predicted by means of recurrent
equation (23) for different values of exponent n.
the fins with an insulated and non-insulated tip, respec-
tively. A maximum discrepancy between the former and
latter cases not exceed 2% for positive 0 6 n 6 5 at
0 6 x2Bi 6 0.015 and 0 6 N 6 5, whereas it somewhat in-
creases for negative � 0.5 6 n < 0. The difference in Te vs

N and n for the fins with insulated (x2Bi = 0) and non-
insulated tip (x2Bi = 0.015) shown in Fig. 3 is relatively
small. It is most pronounced for the low values of N. The
corresponding curves Te vs N for so called ‘‘asymptotical”
fins with N P 3.5 practically merge.

4. Closed-form direct solution

4.1. Dimensionless temperature of the fin tip

The following approach based on the high convergence
rate of Eq. (23) is proposed in this section to obtain the
closed-form direct solution for the accurate determination
of the relationship between the dimensionless temperature
of the fin tip Te and parameters n, N and x2Bi.

First, the relationship between T �e;app and parameters N

and n is determined for a fin with an insulated tip
(x2Bi = 0) using the data of numerical calculations,
approximated by the following function of N:

T �e;app ¼ coshðP 1N þ P 2N 1=2Þ= coshðN þ P 3N 3Þ: ð24Þ

The coefficients P1–P3 are expressed by the following func-
tions of n.

For 0 6 n 6 5

P 1 ¼ 3:7n=ð1þ 3:55nÞ;
P 2 ¼ �2:24n=ð1þ 4:62nþ 0:62n2Þ;
P 3 ¼ 0:

ð25Þ

If the heat transfer coefficient over the whole fin surface is
uniform, i.e. n = 0, then all coefficients P1–P3 in Eq. (24)
according to Eq. (25) are equal to zero. In this case Eq.
(24) converts into the well-known exact solution Eq. (16)
for a straight fin or spine of constant cross section with
an insulated tip (x

ffiffiffiffiffi
Bi
p
¼ 0).

For �0.75 6 n < 0

P 1 ¼ �1:993n=ð1� 0:9n� 1:563n2Þ;
P 2 ¼ 1:88n=ð1� 1:115n� 0:87n2Þ;
P 3 ¼ �0:121n=ð1þ 1:546nþ 0:581n2Þ:

ð26Þ

The examples of approximations using the relationship T �e
vs N according to Eq. (24) for three values of n, specifically,
n = �0.5, 0 and 5 are presented in Fig. 4a–c, respectively.
The n dependence of the coefficients P1 and P2 in Eq.
(24) for n P 0 expressed by Eq. (25) is shown in Fig. 5a
and b.

Second, the obtained value of T �e;app is substituted into
the RHS of Eqs. (12), (20), and (23) instead of Te. As a
consequence, the LHS of Eq. (23) gives the final refined
and practically exact value of Te. This result is confirmed
by Fig. 6 for the fins with insulated (x2Bi = 0, a) and



a b

c

Fig. 4. Dimensionless temperature of the fin tip T �e;app plotted as a function of thermo-geometrical parameter N for a straight fin with an insulated tip
obtained by numerical evaluation of the integral in Eq. (6) (dot-centered open circles) and its fit (solid curves) by means of Eq. (24) for n = �0.5 (a), n = 0
(b), and n = 5 (c).

a b

Fig. 5. Coefficients P1 and P2 in Eq. (24) plotted as functions of exponent n (a and b, respectively) shown by dot-centered open circles and its fit by
homographic functions equation (26) at n > 0 (solid lines) for a straight fins with an insulated tip (x2Bi = 0).
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a b

Fig. 6. Percent relative discrepancy u between the values of Te predicted using closed-form equations (23)–(26) and recurrent equation (23) for straight fins
with an insulated tip (x2Bi = 0, a) and non-insulated tip (x2Bi = 0.015, b).
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non-insulated tips (x2Bi = 0.015, b), where the relative dis-
crepancy u between Te calculated using closed-form Eqs.
(23)–(26) and recurrent equation (23) is plotted against
the fin parameter N. Now, it could be seen that the maxi-
mum relative discrepancy is �0.14% 6 u 6 0.04% for
x2Bi = 0, 0 < N 6 5, and �0.5 6 n 6 5. Analogous com-
parisons for x2Bi = 0.015 in the same range of independent
variables give the maximum relative discrepancy within the
range �0.12% 6 u 6 0.12%. Thus, Eq. (23) in combination
with Eqs. (24)–(26) can be considered as a direct closed-
form high accuracy solution to determine the relationship
between Te and parameters N, n and x2Bi. The results of
these evaluations are practically identical to those calcu-
lated by recurrent formula (23) and plotted in Fig. 3.

4.2. Temperature distribution in a fin

The expression for the product of the dimensionless
coordinate X along a fin height and the thermo-geometrical
parameter N of the fin with a non-insulated tip is the same
definite integral as in Eq. (6), but with the other limits of
integration (from Te to T instead of from Te to 1), for
n 6¼ �2

X �N ¼
Z T

T e

dT=
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
½2=ðnþ 2Þ�fT nþ2 � T nþ2

e ½1� ðnþ 2Þx2BiT n
e=2�g

q
;

ð27Þ

Obtain a general expression for the evaluation of the con-
sidered definite integral with an arbitrary upper limit. To
do this, it is suitable to denote

j ¼ ½1� ðnþ 2Þx2BiT n
e=2�1=ðnþ2Þ

; ð28Þ

and introduce another variable of integration n = Te/T.
Using these definitions, Eq. (6) can be readily transformed
into the form, for n 6¼ �2
N ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
nþ 2

2ðT ejÞn

s Z j

T ej

dnffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
n2�n � n4

p ; ð29Þ
According to Eqs. (8) and (9), the parameter of the fin is
equal to

N ¼ arcoshð1=T e

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1� x2Bi
p

Þ

� arcoshð1=
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1� x2Bi
p

Þ=T ln
e : ð30Þ
By equating these expressions it is obtained

IðT e; n;x2BiÞ

¼
Z j

T ej

dnffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
n2�n � n4

p ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2ðT ejÞn

ðnþ 2Þ

s

� arcosh½1=ðT e

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1� x2Bi
p

Þ� � arcoshð1=
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1� x2Bi
p

Þ
T ln

e

( )
:

ð31Þ
The integral in Eq. (27) will transformed in a similar man-
ner into the following form:

for n 6¼ �2

X � N ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
nþ 2

2ðT ejÞn

s Z j

T e
T j

dnffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
n2�n � n4

p : ð32Þ
It can be seen that the integral in RHS of Eq. (32) is nearly
equivalent to that in the RHS of Eq. (29), but with another
bottom limit of integration Tej/T instead of Tej. In order
to obtain the full equivalency, it is sufficient to replace the
value x2Bi in the RHS of Eq. (31) by x2BiTn. Therefore, if
the bottom limit in the integral of Eq. (31) is denoted by
(Te/T)j, the following expression is obtained:



Fig. 7. Temperature distribution in straight fins with an insulated tip
(x2Bi = 0, solid lines) and non-insulated tip (x2Bi = 0.015, short-dashed
lines) predicted by Eqs. (43)–(45) for given N = 1 and different values of
exponent n.
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IðT e=T ;n;x2BiÞ¼
Z j

T e
T j

dnffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
n2�n�n4

p ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2ðT ejÞn

ðnþ2Þ

s

� arcoshf1=½ðT e=T Þ
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1�x2BiT n
p

�g�arcoshð1=
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1�x2BiT n
p

Þ
ðT e=T Þln

( )
:

ð33Þ

Upon substitution of this expression into Eq. (32), the in-
verse formula for the temperature distribution in a fin
follows:

X ¼
arcosh 1=½ðT e=T Þ

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1� x2BiT n
p

�
n o

� arcoshð1=
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1� x2BiT n
p

Þ

NT ln
e T ð

1
2�lÞn

:

ð34Þ

Eq. (34) can be readily transformed into the recurrent di-
rect expression to determine T for given X, n, N and
x2Bi with the Te obtained using Eqs. (23)–(26). Denote

U ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1� x2BiT n
p

; ð35Þ
V ¼ NXT ln

e T ð
1
2�lÞn; ð36Þ

W ¼ V þ arcoshð1=UÞ: ð37Þ

Using Eq. (34) and the denotations above, one get

arcoshf1=½ðT e=T ÞU �g ¼ W : ð38Þ

Then, the following recurrent expression to determine T for
given values of X, n, N and x2Bi is obtained

T ¼ T eU cosh W : ð39Þ

Unfortunately, Eq. (39) has a poor convergence rate.
Therefore, this equation is transformed into the recurrent
formula with a high convergence rate using the same line-
arization approach, as in the development of the recurrent
equation (23). For simplicity’s sake the following denota-
tions are introduced in addition to the ones above in Eqs.
(35)–(37),

U 1 ¼ nð1� U 2Þ=ð2UÞ; ð40Þ

U 2 ¼ n
ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1� U 2

p
=ð2U 2Þ; ð41Þ

R ¼ Un
1

2
� l

� �
V � U 2

� �
: ð42Þ

As a result, to determine the temperature profile along a fin
with a non-insulated tip the following direct equation is
obtained:

T ¼ T e

ðU þ U 1Þ cosh W � R sinh W
1þ T eðU 1 cosh W � R sinh W Þ=T

: ð43Þ

One can easily see from Eqs. (35)–(37) and (40)–(42) that
for fins with an insulated tip x2BiT n

e ¼ 0 and according
to Eqs. (35), (40) and (41) U = 1, U1 = 0, and U2 = 0.
From Eqs. (36), (37) and (42) V ¼ NXT 0:4n

e T 0:1n, W = V

and R = 0.1nV. Upon substitution of these values into
Eq. (43), one obtains

T � ¼ T �e
cosh V � R sinh V
1� T �eR sinh V =T �

: ð44Þ
The linear dependence

T � ¼ T �e þ X ð1� T �eÞ: ð45Þ

can be taken as the zero approximation for T* in the RHS
of Eq. (44),

The numerical calculations of the temperature profiles
for the fins with different values of n, N and x2Bi showed
that even a single calculation using Eq. (44) with a linear
approximation by Eq. (45) is sufficient to determine the
value of T* in the LHS of Eq. (44) with the relative error
less than 0.01%. Two–three iterations allow one to deter-
mine the value of T* with the relative error 10�3–10�4%.
Thus, Eqs. (44) and (45) can be assumed as a closed-form
explicit equation for the temperature profile in a fin with
an insulated tip.

The near exact value of T can be determined in the LHS
of Eq. (43) for the fin with a non-insulated tip if the value
of T* calculated using Eqs. (44) and (45) is used as T in the
RHS of Eq. (43). Therefore, Eq. (43) with denotations
expressed by Eqs. (35)–(37), and (40)–(42) can be consid-
ered as a high accuracy closed-form solution for the tem-
perature profile in a fin with a non-insulated and, in
particular, insulated tip. The temperature distribution T

vs X in a straight fin with an insulated (x2Bi = 0, solid
lines) or non-insulated tip (x2Bi = 0.015, short-dashed
lines) calculated using these equations is shown in Fig. 7
for N = 1 and different n. Apparently, for x2Bi = 0 the gra-
dient of T at the tip of fin where X = 0 is equal to zero as
the boundary condition for an insulated tip requires. All
curves for x2Bi = 0.015 and different n pass steeper than
corresponding curves for x2Bi = 0 and gradient of T at
X = 0 is not equal to zero (because the fin tip is non-
insulated).

The comparison between the temperature distribution in
a cylindrical copper rod where heat transfer by film boiling
with water occurs is shown in Fig. 8. The calculations



Fig. 8. Temperature distribution in the cylindrical copper rod with an
insulated tip (upper two curves) and non-insulated tip (lower two curves)
predicted by Eqs. (43)–(45) (solid lines 1), and experimental data of [16]:
points 2–5 present data in film boiling with water (n = �0.5) on the rod of
d = 25 mm, l = 85 mm, and w = 13.6 at #b = 254, 140, 90 and 84 �C
(N = 0.77, 0.90, 0.94 and 1.03, respectively).

Fig. 9. Temperature distribution in the cylindrical copper rod with a non-
insulated tip predicted by Eqs. (43)–(45) (solid lines) and experimental
data of [22]: points 2 and 3 present data in film (n = �0.5) and nucleate
pool boiling (n = 2) with Freon-113 on the rod of d = 14 mm, l = 66 mm,
and w = 18.86 at #b = 226 and 20 �C (N = 0.72 and 3.98, respectively).
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results with Eqs. (43)–(45) and experimental data of [16] are
presented. Analogous comparison with experimental data
of [22] for the film and nucleate pool boiling with R113
on the cylindrical rod is shown in Fig. 9. The fin dimensions
and values of n, N and w are given in the captions to these
figures. The details of experiments are available in [16,22]. It
can be seen that the predicted temperature distribution
agrees well with experimental data.

5. Dimensionless geometrical and thermal characteristics of

the straight plate and cylindrical pin fins

The varieties of the geometrical and thermal characteris-
tics are used in numerous publications relating to the fin
thermal analysis. An attempt is undertaken in the present
study to relate such characteristics of fins with the power-
law type dependence of the local heat transfer coefficient
on the corresponding temperature difference between the
fin surface and surrounding medium and to systematize
these relations.
5.1. Geometrical characteristics of the SPF and CPF

Before to discuss the different thermal characteristics of
the fins, the dimensionless geometrical fin characteristics
and their relations are considered. First, the obvious rela-
tions between the reduced (half) profile area of the SPF
(reduced volume of the CPF), its transverse dimension
and height are expressed asbAp ¼ Ap=2 � ðap=2Þðhb=kÞ2 ¼ BiBil; ð46ÞbV ¼ V =ð4pÞ � ½v=ð4pÞ�ðhb=kÞ3 ¼ Bi2Bil; ð47Þ

where Bi = hb(d/2)/k in Eq. (46) is a dimensionless half-
thickness of the SPF, Bi = hb(r/2)/k in Eq. (47) is a dimen-
sionless half-radius of the CPF, Bil = hbl/k is a dimensionless
height of the SPF and CPF.

The fin aspect ratio w = Bil/Bi and fin surface extension
factor Ef are another dimensionless geometrical values used
in the papers related to the fin analysis. In general case, the
fin extension factor Ef is defined as the ratio of the fin sur-
face area where the heat transfer occurs to the cross-sec-
tional area of the fin, i.e. Ef = F/A. When the
corresponding expressions for F and A is substituted into
this formula, then with regard to Eq. (3) the following for-
mula can be obtained for a fin with a non-insulated tip:

Ef ¼ 1þ l=ðd=2Þ ¼ 1þ l=ðr=2Þ ¼ 1þ Bil=Bi

¼ 1þ N=
ffiffiffiffiffi
Bi
p

¼ 1þ w: ð48Þ

For a fin with an insulated tip the number one have to be
omitted in all expressions of the last equation and super-
script ‘‘*” after all variables must be introduced.
5.2. Thermal characteristics of the SPF and CPF

The different forms of the dimensionless thermal con-
ductance of the fin, augmentation factor (effectiveness
according to Gardner, see [5], sometimes named ‘‘removal
number”) and the fin efficiency will be considered below.
These are the main thermal parameters of a fin in addition
to the dimensionless temperature of the fin tip Te and the
temperature distribution along the fin height.
5.2.1. Fin base thermal conductances Gb and Gd

Dimensionless thermal conductance at the base of a fin
with a non-insulated tip Gb is expressed by Eqs. (6) and (7)
with Te calculated by means of Eq. (23). When the heat
transfer coefficient over the whole surface of a fin including
its tip is uniform, the exponent n = 0 and upon substitution
of the closed-form equation (16) into Eq. (7), one obtains
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Gb;n¼0 ¼ N

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1� 1� x2Bi

cosh N þ x
ffiffiffiffiffi
Bi
p

sinh N

s
ð49Þ

or, after the simple algebra,

Gb;n¼0 ¼ N
tanh N þ x

ffiffiffiffiffi
Bi
p

1þ x
ffiffiffiffiffi
Bi
p

tanh N
: ð50Þ

If a tip of a fin is insulated, then from the latter equation
the known expression follows:

Gb;n¼0 ¼ N tanh N : ð51Þ

We introduced in [2] the relative base thermal conductance
of a fin with an insulated tip. Accounting to the heat trans-
fer from the fin tip, this expression changes to the following
form:

Gd � Gb=Gb;n¼0

¼ ð1þ x
ffiffiffiffiffi
Bi
p

tanh NÞ

�

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
½2=ðnþ 2Þ�f1� T nþ2

e ½1� ðnþ 2Þx2BiT n
e=2�g

q
tanh N þ x

ffiffiffiffiffi
Bi
p :

ð52Þ

The plots Gb and Gd vs N for 0 6 N 6 2 and � 0.5 6 n 6 5
are shown in Fig. 10a and b, respectively. It can be seen
that the curves Gb and Gd vs N for various values of n

and two extreme values of x2Bi differ noticeably only for
N < 1. When N approaches to 2 the curves for every value
of n and x2Bi = 0 and x2Bi = 0.015 merge. For N P 2
these curves are valid for the above-mentioned ‘‘asymptot-
ical” fins.
a

Fig. 10. Fin base thermal conductance Gb and related base thermal conductanc
respectively, for the SPF with an insulated tip (x2Bi = 0, solid lines) and non-
and (23)–(26) at different values of n.
5.2.2. Base thermal conductance of the SPF (CPF) with

given profile area (volume)

For the analysis of various fin optimization problems it
is convenient to introduce the further kind of thermal con-
ductance at a fin base, which is referred to as the thermal
conductance at the specified fin volume V = v(h/k)3 for
the CPF or those at the specified profile area Ap = ap(h/
k)2 for the SPF.

According to Eqs. (3), (46) and (47) the following rela-
tions are valid between the geometrical dimensions of a
fin and its thermo-geometrical parameter N for the SPF
and CPF, respectively:bAp � Ap=2 ¼ NBi3=2; ð53ÞbV � V =ð4pÞ ¼ NBi5=2: ð54Þ

Upon substitution of the expressions for the fin cross-sec-
tional area A into the LHS of Eq. (7), one obtains

for the SPF

Gb ¼
gbl
kA
¼ gb

2zk
l

d=2
¼ Gz

Bil

2Bi
¼ bGz

Bil

Bi
¼ bGzw; ð55Þ

for the CPF

Gb ¼
gbl
kA
¼ gbhb

k2

l

4pðr=2Þ2
¼ Gc

Bil

4pBi2
¼
bGc

Bi
w; ð56Þ

where Gz = gb/(zk), bGz ¼ Gz=2 and Gc = gbhb/k2, bGc ¼
Gc=ð4pÞ are the dimensionless thermal conductances and
reduced thermal conductances of the SPF and CPF,
respectively.

Eq. (3) in combination with Eq. (55) for the SPF at
z	 d gives

w � Bil

Bi
¼ Nffiffiffiffiffi

Bi
p ¼ N 4=3bA1=3

p

: ð57Þ
b

e Gd plotted as functions of the thermo-geometrical parameter N (a and b),
insulated tip (x2Bi = 0.015, short-dashed lines) predicted by Eqs. (7), (52)
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Then using Eq. (57), Eq. (55) can be rewritten as

Gb ¼
bGzbA1=3
p

N 4=3 ¼ GN 4=3; ð58Þ

where the factor bGz=bA1=3
p is denoted by G. Upon substitu-

tion of the expression for Gb from the RHS of Eq. (7) into
Eq. (58) and resolving the obtained equation with respect
to G, one can find, that

G �
bGzbA1=3
p

¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
½2=ðnþ 2Þ�f1� T nþ2

e ½1� ðnþ 2Þx2BiT n
e=2�g

q
N 1=3

: ð59Þ

Similarly, for the CPF equation (3) in combination with
Eq. (54) gives

Bil

4pBi2
¼ N 8=5

4p½V =ð4pÞ�3=5
: ð60Þ

Using denotations under Eq. (56), this equation can be
rewritten as

Gb �
Gc

4p½V =ð4pÞ�3=5
N 8=5 ¼

bGcbV 3=5
N 8=5 ¼ GN 8=5; ð61Þ

where the factor bGc=bV 3=5 is denoted by G. Upon substitu-
tion of the expression for Gb from the RHS of Eq. (7) into
Eq. (61) and resolving this equation with respect to G, it is
obtained

G �
bGcbV 3=5

¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
½2=ðnþ 2Þ�f1� T nþ2

e ½1� ðnþ 2Þx2BiT n
e=2�g

q
N 3=5

: ð62Þ

From Eqs. (46) and (47) follows that x2Bi ¼
x2½Bi2

a=ð2NÞ�2=3 for the SPF and x2Bi ¼ x2½Bi3
v=ð4pNÞ�2=5

for the CPF. After substitution of these values instead of
x2Bi into RHS of Eqs. (59) and (62) these equations in
combination with Eqs. (8)–(11) can be used for the optimi-
zation of the SPF and CPF by the numerical search of the
position and the peak value of the function G vs Te for the
given parameters n and x2Bi4=3

a for the SPF as well as n and
x2Bi6=5

v for the CPF. The different optimizations problems
for the SPF and CPF will be comprehensively considered in
the second part of this study [23].

Below we will consider the integral dimensionless ther-
mal characteristics of a fin, specifically, fin augmentation
factor K, fin efficiency g and their relations between each
other and with another fin characteristics. We next will
present all most important relations between any required
characteristic from the list including four geometrical and
three thermal characteristics and any other given character-
istic from this list as well as the given generalized fin
parameter(s) N and (or) G.
5.2.3. Fin augmentation factor (effectiveness) and fin

efficiency: relations between fin parameters

The fin augmentation factor (ratio) K first referred to as
‘‘fin effectiveness” by Gardner in 1945 is defined in [5] as
the ratio of the fin dissipation (equal, in the steady state,
to the heat passing through the base of the fin by conduc-
tion) to the heat passing through the fin footprint of the
base or prime surface if the fin not present. In the thermal
conductance terms, used in this paper, the fin augmenta-
tion factor is defined as a ratio of the actual thermal con-
ductance of a fin at its base to the thermal conductance
of the prime surface with the area equal to the cross-sec-
tional area of the fin at its base and with the same heat
transfer coefficient as those at the fin base.

According to the LHS of Eqs. (55) and (56) the actual
base thermal conductance of the SPF and CPF is expressed
as gb = GbkA/l. The thermal conductance of the prime sur-
face with the area equal to the cross-sectional area of the
fin A and with the same heat transfer coefficient hb as for
the fin base is equal to gp = hbA. Dividing the former
expression by the latter one, gives

K ¼ gb=gp ¼ Gbk=ðhblÞ ¼ Gb=Bil: ð63Þ

Upon substitution of the expressions Gb vs G and N (Eqs.
(58) and (61) for the SPF and CPF, respectively) into Eq.
(63), one obtains

for the SPF

K ¼ Gb

Bil
¼ GN 4=3

Bil
¼ GN 1=3ffiffiffiffiffi

Bi
p ¼ G

N 2=3
w; ð64Þ

for the CPF

K ¼ Gb

Bil
¼ GN 8=5

Bil
¼ GN 3=5ffiffiffiffiffi

Bi
p ¼ G

N 2=5
w: ð65Þ

Fin efficiency g is defined in [5] as the ratio of the actual
heat dissipation of a fin to its ideal dissipation if the entire
fin were at the same temperature as its base. In the thermal
conductance terms used in present paper, fin efficiency is
defined as the ratio of the actual thermal conductance of
a fin at the base to the thermal conductance of this fin with
uniform heat transfer coefficient over the entire fin surface.
The heat transfer coefficient equal to hb and the tempera-
ture excess over the whole fin equal to #b as so this fin
has the infinite thermal conductivity of the fin material.

The base thermal conductance of the SPF and CPF with
a non-insulated tip and infinite thermal conductivity of the
fin material is equal to

gb;k¼1 ¼ hbAEf ¼ hbAð1þ N=
ffiffiffiffiffi
Bi
p
Þ ¼ hbAð1þ wÞ: ð66Þ

Upon substitution of the function Gb vs G and N (Eqs. (58)
and (61) for the SPF and CPF, respectively) into Eq. (63)
and dividing the result by Eq. (66), one obtains the follow-
ing formulae:



Table 1
The SPF required geometrical or thermal parameter as a function of its given parameter and fin parameter(s) N or (and) G

Given parameter Required parameterbAp Bi Bil w bGz GzAp KbAp
bAp ðbAp=NÞ2=3 N 2=3bA1=3

p ðN4=bApÞ1=3 GbA1=3
p G=bA2=3

p GN2=3=bA1=3
p

Bi NBi3=2 Bi NBi1=2 N=Bi1=2 GN1=3Bi1=2 G=ðN 2=3BiÞ GN1=3=Bi1=2

Bil Bi3l =N2 ðBil=NÞ2 Bil N2=Bil GBil=N2=3 GN4=3=Bi2l GN4=3=Bil

w N4=w3 N2=w2 N 2=w w GN4=3=w ðG=N 8=3Þw2 ðG=N2=3ÞwbGz ðbGz=GÞ3 ðbGz=GÞ2=N2=3 N 2=3ðbGz=GÞ N4=3ðG=bGzÞ bGz GðG=bGzÞ2 GN2=3ðG=bGzÞ
GzAp ðG=GzAp Þ

3=2 ðG=GzAp Þ=N2=3 N 2=3ðG=GzAp Þ
1=2 N4=3ðGzAp=GÞ1=2 GðG=GzAp Þ

1=2 GzAp GN2=3ðGzAp=GÞ1=2

K N2ðG=KÞ3 N2=3ðG=KÞ2 N 4=3ðG=KÞ N2=3ðK=GÞ GN2=3ðG=KÞ GðK=GÞ2=N4=3 K

Table 2
The CPF required geometrical or thermal parameter as a function of its given parameter and parameter(s) N or (and) G

Given parameter Required parameterbV Bi Bil w bGc GcV KbV bV ðbV =NÞ2=5 N4=5 bV 1=5 ðN6=bV Þ1=5 GbV 3=5 G=bV 2=5 GN4=5=bV 1=5

Bi NBi5=2 Bi NBi1=2 N=Bi1=2 GN3=5Bi3=2 G=ðN2=5BiÞ GN3=5=Bi1=2

Bil Bi5l =N4 ðBil=NÞ2 Bil N2=Bil ðG=N12=5ÞBi3l GN8=5=Bi2l GN8=5=Bil

w N6=w5 ðN=wÞ2 N2=w w GN18=5=w3 ðG=N12=5Þw2 ðG=N2=5ÞwbGc ðbGc=GÞ5=3 ðbGc=GÞ2=3=N2=5 N4=5ðbGc=GÞ1=3 N6=5ðG=bGcÞ1=3 bGc GðG=bGcÞ2=3 GN4=5ðG=bGcÞ1=3

GcV ðG=GcV Þ5=2 ðG=GcV Þ=N2=5 N4=5ðG=GcV Þ1=2 N6=5ðGcV =GÞ1=2 GðG=GcV Þ3=2 GcV GN4=5ðGcV =GÞ1=2

K N4ðG=KÞ5 N6=5ðG=KÞ2 N8=5ðG=KÞ N2=5ðK=GÞ GN12=5ðG=KÞ3 ðG=N8=5ÞðK=GÞ2 K
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for the SPF

g ¼ GN 1=3ffiffiffiffiffi
Bi
p

Ef

¼ K
Ef

¼ G

N 2=3

w
1þ w

� �
; ð67Þ

for the CPF

g ¼ GN 8=5

N
ffiffiffiffiffi
Bi
p ¼ K

Ef

¼ G

N 2=5

w
1þ w

� �
: ð68Þ

The fin base thermal conductance G in the RHS of Eqs.
(67) and (68) is determined by Eqs. (59) and (62), respec-
tively. For fins with an insulated tip the last therm in paren-
theses of the RHS of Eqs. (67) and (68) is equal to 1.

It is seen from Eqs. (67) and (68) that fin efficiency g is
equal to the fin augmentation factor K divided by the fin
surface extension factor Ef. Besides, the fin efficiency for
the SPF and CPF with an insulated tip is equal to
g* = G*/N*2/3 and g* = G*/N*2/5, respectively.

The formulae relating the required geometrical or ther-
mal parameter of the SPF or CPF with any one of its given
geometrical or thermal parameter, and the main general-
ized parameter(s) of the fin N and (or) G are presented in
readily simple form in Tables 1 and 2 convenient for the
use in practice. The thermal conductance G is used only
in the cases when any one from the thermal parameters
of the fin is given and (or) required.

6. Numerical example

The following numerical example is considered to illus-
trate the developed procedures taking into account for
the geometrical and thermal characteristics of fins with
insulated and non-insulated tips.

6.1. Input data

The next dimensionless characteristics of the SPF are
given: exponent in Eq. (1) for nucleate pool boiling as a
heat transfer mode n = 2, thermo-geometrical parameter
N = 1, height Bil = 0.1, ratio of heat transfer coefficients
on the tip and lateral surfaces of the fin x = 1. It is required
to determine other dimensionless geometrical and thermal
characteristics of this fin.

6.2. Solution procedure

(1) First, determine geometrical characteristics of the fin
using the formulae collected in Table 1.Fin profile
area is
Ap ¼ 2bAp ¼ 2Bi3
l=N 2 ¼ 2 � 0:13=12 ¼ 2� 10�3;

corresponding Biot number is

Bia � a1=2
p hb=k ¼

ffiffiffiffiffi
Ap

p
¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2� 10�3

p
¼ 0:044721;

half-thickness of the fin, or the transverse Biot num-
ber is

Bi ¼ Bi2
l=N 2 ¼ 0:12=12 ¼ 0:01;

aspect ratio, or the fin height to half-thickness ratio is

w ¼ N 2=Bil ¼ 12=0:1 ¼ 10;
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fin extension factor we get according to Eq. (48),

Ef ¼ 1þ w ¼ 1þ 10 ¼ 11:
(2) The preexponential factor l is determined using Eq.
(11) with given x = 1 and Bi = 0.01, obtained above,
l ¼ 0:4ð1þ 0:8
ffiffiffiffiffi
Bi
p
� 0:414BiÞ

¼ 0:4ð1þ 0:8
ffiffiffiffiffiffiffiffiffi
0:01
p

� 0:414 � 0:01Þ ¼ 0:43034:
(3) The approximate dimensionless tip temperature T �e;app

of the fin with an insulated tip is determined by
means of the procedure considered above. First, the
coefficients P1, P2 and P3 in Eq. (24) are calculated
using Eq. (25)
P 1 ¼ 3:7n=ð1þ 3:55nÞ ¼ 3:7 � 2=ð1þ 3:55 � 2Þ ¼ 0:91358;

P 2 ¼ �2:24n=ð1þ 4:62nþ 0:62 � 22Þ ¼
�2:24 � 2=ð1þ 4:62 � 2þ 0:62 � 22Þ ¼ �0:3522;

P 3 ¼ 0:

Then T �e;app is determined using Eq. (24):

T �e;app ¼
coshðP 1N þ P 2N 1=2Þ

coshðNÞ

¼ coshð0:91358 � 1� 0:3522 � 11=2Þ
coshð1Þ ¼ 0:75288:

Next, the parameters Z and Az are determined upon
substitution of this T �e;app value instead of Te as well as
the given values of n and N and calculated values of
Bi and l into the RHS of Eqs. (12) and (20),
respectively

Z ¼ NT ln
e þ arcosh

1ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1� x2Bi
p
� �

¼

1 � 0:752880:43034�2 þ arcosh
1ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

1� 1 � 0:01
p
� �

¼ 0:88358;

AZ ¼ lnNT ln
e tanh Z

¼ 0:43034 � 2 � 1 � 0:75290:43034�2 tanhð0:88358Þ ¼ 0:47743:

The final Te value is determined by the LHS of
Eq. (23). Upon substitution of the calculated above
T �e;app; Z, and Az into the RHS of this equation, one
obtains,

T e ¼
1þ AZffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

1� x2Bi
p

cosh Z þ ðAZ=T eÞ

¼ 1þ 0:47743ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1� 1 � 0:01
p

coshð0:88358Þ þ ð0:47743=0:75288Þ
¼ 0:723:
(4) The thermal conductance of the fin G is determined
by substitution of the given values of n and N, and
the calculated above values Bi and Te into the RHS
of Eq. (59),
G¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2

nþ2
1�T nþ2

e 1�nþ2

2
x2BiT n

e

� �� �s
N 1=3
	

¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2

2þ2
1�0:7232þ2 1�2þ2

2
�12 �0:01 �0:7232

� �� �s ,
11=3¼ 0:604:
(5) The thermal conductance Gz and specific thermal
conductance GzAp of the SPF at base are determined
by formulae presented in Table 1:
Gz ¼ 2bGz ¼ 2GBil=N 2=3 ¼ 2 � 0:604 � 0:1=12=3 ¼ 0:1208;

GzAp ¼ GN 4=3=Bi2
l ¼ 0:604 � 14=3=0:12 ¼ 60:4:
(6) Finally, the augmentation factor and efficiency of the
SPF are determined using Table 1 and Eq. (67),
respectively:
K ¼ GN 4=3=Bil ¼ 0:604 � 11=3=0:1 ¼ 6:04;

g ¼ K=Ef ¼ 6:04=11 ¼ 0:5491:
6.3. Solution check

The parameter of the fin with uniform heat transfer
coefficient over the whole fin surface (n = 0) and certain
values of Te and Bi calculated above is determined using
Eq. (10),

N 0¼ lnf½1þ
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1�T 2

eð1�BiÞ
q

�=½T eð1þ
ffiffiffiffiffi
Bi
p
Þ�g¼

lnf½1þ
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1�0:7232ð1�0:01Þ

q
�=½0:723ð1þ

ffiffiffiffiffiffiffiffiffi
0:01
p

Þ�g¼ 0:7565:

The parameter of the considered fin with non-uniform heat
transfer coefficient (n = 2) and certain values of N0, Te and
l calculated above is determined using Eq. (8),

N ¼ N 0T�ln
e ¼ 0:7565 � 0:723�0:43034�2 ¼ 1:0001;

that coincides with the given N value to the three digit
precision.

If n, N, and the thermal parameter of the SPF Gz are
specified, then the characteristics of the fin with an
insulated tip are determined first. The value of
T �e;app ¼ 0:75288 is already determined above. The thermal
conductance G* of the fin with an insulated tip is calculated
by means of Eq. (59) at x = 0 in the RHS

G� ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ð2=4Þð1� 0:752884Þ

q
=11=3 ¼ 0:58254:

Then the transverse Biot number Bi* is determined by for-
mula presented in Table 1:

Bi� ¼ ðbGz=G�Þ2=ðN 2=3Þ ¼ ðGz=G�Þ2=ð4N 2=3Þ

¼ ð0:1208=0:58254Þ2=ð4 � 12=3Þ ¼ 0:01075:

The preexponential factor l is determined using Eq. (11):

l ¼ 0:4ð1þ 0:8
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
0:01075
p

� 0:414 � 0:01075Þ ¼ 0:4314:
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The parameters Z and Az are determined by means of Eqs.
(12) and (20), respectively

Z ¼ 1 � 0:752880:4314�2 þ arcoshð1=
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1� 0:01075
p

Þ ¼ 0:88684;

Az ¼ 0:4314 � 2 � 1 � 0:752880:4314�2 tanhð0:88684Þ ¼ 0:47941:

The dimensionless temperature excess Te of this fin with a
non-insulated tip is determined using Eq. (23):

T e ¼
1þ 0:47941ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

1� 0:01075
p

coshð0:88684Þ þ ð0:47941=0:75288Þ
¼ 0:72208:

This value is less than the value 0.723, obtained above, by
as little as 0.13%. Upon substitution of this value Te in the
RHS of Eq. (59) one obtains the thermal conductance G of
this fin with non-insulated tip:

G ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ð2=4Þ 1� 0:722084 1� ð4=2Þ0:01075 � 0:72208½ �


 �q
=11=3

¼ 0:60513:

Then the transverse Biot number Bi is determined using the
formula presented in Table 1:

Bi ¼ ðGz=GÞ2=ð4N 2=3Þ ¼ ð0:1208=0:60513Þ2=ð4 � 12=3Þ
¼ 0:00996:

This value is less than the exact one, obtained above, by as
little as 0.4%.

Any required characteristic of the CPF may also be
determined by the same procedures if n, x, N and any
one of the geometrical or thermal parameters of this fin
are given.
7. Conclusions

(1) The effect of the fin tip heat loss is taken into account
both for the inverse closed-form and the direct recur-
rent solutions.

(2) The inverse closed-form solution for fins with non-
insulated tips is derived in the same form of Eq. (8)
as for fins with insulated tips except that both the pre-
exponential coefficient l and thermo-geometrical
parameter N0 of a fin with n = 0 depend, in addition,
on the complex parameter x2Bi.

(3) The obtained closed-form inverse solution is inverted
into the direct recurrent solution to determine Te and
the temperature distribution along a fin height for the
given values of n, N, and x2Bi.

(4) The linearization method, developed in [2], is used to
transform the obtained recurrent solutions with a
poor convergence rate both for Te and for the tem-
perature distribution along a fin height into the recur-
rent formulae with a very high convergence rate.
(5) The correlation T �e;app vs N and n obtained for a fin
with an insulated tip only is used instead of Te in
the RHS of the direct recurrent solution Eq. (23) with
high convergence rate to transform it into the direct
closed-form solution for fins with non-insulated
and, particularly, insulated tips.

(6) The direct closed-form formula based on the recur-
rent one is derived also for the temperature distribu-
tion along a fin with a non-insulated tip.

(7) The formulae were systematized, which allow using
the given geometrical or thermal parameter of a
fin and given or calculated main dimensionless
fin parameters N and G to determine all other
dimensionless geometrical and thermal parameters
of the SPF and CPF, for example, fin height
and thickness (radius), aspect ratio, different types
of the thermal conductance, efficiency, augmenta-
tion factor, etc. These formulae collected in Tables
1 and 2 can be used also for the solution of the
fin optimization problems. Such problems will be
considered more detailed in the second part of this
study.
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